0059512

differnt for the same of the s

P.O. Box 450 Richland, Washington 99352

03-ED-050

APR 2 3 2003

Mr. Jerry Leitch, Chief Radiation and Indoor Air Section U.S. Environmental Protection Agency Region 10 1200 Sixth Avenue Seattle, Washington 98101

Mr. A.W. Conklin, Head Air Emissions and Defense Waste Section State of Washington Department of Health P.O. Box 47827 Olympia, Washington 98504

EDMC

Addressees:

RADIOACTIVE AIR EMISSIONS NOTICE OF CONSTRUCTION (NOC) APPLICATION FOR THE E-525 DOUBLE-SHELL TANK (DST) TRANSFER SYSTEM MODIFICATIONS PROJECT

Attached for the State of Washington Department of Health (WDOH) and U.S. Environmental Protection Agency (EPA) review and formal approval is the subject NOC. The NOC is being submitted in accordance with Washington Administrative Code 246-247, Radiation Protection – Air Emissions, and Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants.

This NOC modification is for the E-525 DST Transfer System Modification Project. This NOC application is similar to the DOE/RL-97-09, Radioactive Air Emissions Notice of Construction Use of a Portable Exhauster on Single-Shell Tanks During Salt Well Pumping, which was previously approved by WDOH and the EPA.

If you have any questions, please contact Dennis W. Bowser, of my staff, (509) 373-2566.

Sincerely,

James E. Rasmussen, Director

E Ka

Environmental Division

ED:DWB

Attachment

cc: See page 2

-cc w/o attach:

B. Erlandson, BNI

D. J. Carrell, CHG (w/attach)

C. J. Kemp, CHG (w/attach)

J. Cox, CTUIR

J. L. Hensley, Ecology

O. S. Wang, Ecology (w/attach)

D. Bartus, EPA c/o Ecology

W. E. Green, FHI (w/attach)

J. L. Hanson, INNOV

P. Sobotta, NPT

J. B. Hebdon, RL

M. F. Jarvis, RL

J. J. Martell, WDOH Richland Office (4 copies)

R. Jim, YN

R. Lee, YN

Administrative Record

Attachment 03-ED-050

Radioactive Air Emissions Notice of Construction Application for the E-525 Double-Shell Tank Transfer System Modifications Project

RADIOACTIVE AIR EMISSIONS NOTICE OF CONSTRUCTION APPLICATION FOR THE E-525 DOUBLE-SHELL TANK TRANSFER SYSTEM MODIFICATIONS PROJECT

APRIL 2003

CONTENTS

1.0	FACILITY IDENTIFICATION AND LOCATION	2
	1.1 COORDINATES	2
2.0	RESPONSIBLE MANAGER	2
3.0	PROPOSED ACTION	2
4.0	STATE ENVIRONMENTAL POLICY ACT OF 1971	3
5.0	CHEMICAL AND PHYSICAL PROCESS	3
	5.1 241-AZ-151 CATCH TANK BYPASS – PACKAGE 1	3
	5.2 241-AN & 241-AW CLEAN OUT BOX TRANSFER LINE	_
	MODIFICATIONS – PACKAGE 2	6
	5.3 SY TRANSFER LINE MODIFICATIONS – PACKAGE 3	
	5.4 204-AR TRANSFER LINE MODIFICATION – PACKAGE 4	10
6.0	ABATEMENT TECHNOLOGY	11
0.0	6.1 PIT WORK ABATEMENT	
	6.2 SOIL EXCAVATION ABATEMENT TECHNOLOGES	
	6.3 PIPE CUT ABATEMENT TECHNOLOGIES	
7.0	DRAWING OF CONTROLS	12
8.0	RADIONUCLIDES OF CONCERN	13
9.0	EFFLUENT MONITORING SYSTEM	13
10.0	ANNUAL POSSESSION QUANTITY	14
11.0	PHYSICAL FORM	15
12.0	RELEASE FORM	
13.0	RELEASE RATES	
14.0	LOCATION OF THE MAXIMALLY EXPOSED INDIVIDUAL	17
15.0	TOTAL EFFECTIVE DOSE EQUIVALENT TO THE MAXIMALLY EXPOSED INDIVUDAL) 17
16.0	COST FACTOR IF NO ANALYSIS	18
17.0	DURATION OR LIFETIME	18

18.0	STANDARDS	18
19.0	REFERENCES	19
	APPENDICES	
APPEN	DIX A - EMISSION AND DOSE CALCULATIONS FOR 1" PIPE CUTS (ONSITE) EAST AREA	A-1
APPEN	NDIX B - EMISSION AND DOSE CALCULATIONS FOR 1" PIPE CUTS (OFFSITE) EAST AREA	B-1
APPEN	DIX C - EMISSION AND DOSE CALCULATIONS FOR 3" PIPE CUTS (ONSITE) WEST AREA	C-1
APPEN	NDIX D - EMISSION AND DOSE CALCULATIONS FOR 3"PIPE CUTS, (OFFSITE) WEST AREA	D-1
APPEN	NDIX E - EMISSION AND DOSE CALCULATIONS FOR PIT WORK	E-1
APPEN	VDIX F - POTENTIAL UNABATED EMISSIONS AND DOSE FOR SOIL EXCAVATION ACTIVITIES	F-1
	FIGURES	
FIGUR	E 1. DEPICTION OF 241-AZ-151 EXCAVATION WORK	5
FIGUR	E 2. CLEAN OUT BOX MODIFICATION WORK	7
	E 3. 241-SY TRANSFER LINE MODIFICATIONS - PACKAGE 3	
FIGUR	E 4. 204 AR UNLOADING FACILITY WASTE TRANSFER LINE	
	TABLES	
TABL	E 1. EMISSION POINTS FOR EACH WORK AREA	2
	E 2. CLEAN OUT BOX TRANSFER LINE MODIFICATION - PACKAGE 2	
	E 3. 241-SY TANK FARM TRANSFER LINES AND PIT/NOZZLE END POINTS	
	E 4. SY TRANSFER LINE MODIFICATION - PACKAGE 3	
	E 5. TANK INVENTORY DATA FOR TANK 241-AW-102	
	E 6. TANK INVENTORY DATA FOR TANK 241-SY-101.	
TABL!	E 7. CORRESPONDING DOSES.	1 8

TERMS

ALARACT as low as reasonably achievable control technology

ANSI American National Standards Institute
ASME American Society of Mechanical Engineers

CFR Code of Federal Regulations

COB clean out boxes
DST double-shell tank

Ecology State of Washington, Department of Ecology EPA the U.S. Environmental Protection Agency

HEPA high-efficiency particulate air
MEI maximally exposed individual
MPR maximum public receptor
NOC notice of construction
PTE potential to emit

RCRA Resource Conservation and Recovery Act of 1976
RPP River Protection and Implementation Project

SEPA State Environmental Policy Act
TEDE total effective dose equivalent
WAC Washington Administrative Code

WDOH Washington State Department of Health

WFD waste feed delivery WTP Waste Treatment Plant

METRIC CONVERSION CHART

Into metric units Out of metric units

into metric units		Out of metric units			
If you know	Multiply by	To get	If you know	Multiply by	To get
Length		Length			
Inches	25.40	Millimeters	millimeters	0.0393	Inches
Inches	2.54	Centimeters	centimeters	0.393	Inches
Feet	0.3048	Meters	meters	3.2808	Feet
Yards	0.914	Meters	meters	1.09	Yards
Miles	1.609	Kilometers	kilometers	0.62	Miles
	Area			Area	
square inches	6.4516	Square centimeters	square centimeters	0.155	Square inches
square feet	0.092	Square meters	square meters	10.7639	Square feet
square yards	0.836	Square meters	square meters	1.20	Square yards
square miles	2.59	Square kilometers	square kilometers	0.39	Square miles
Acres	0.404	Hectares	hectares	2.471	Acres
i	Mass (weight)		Mass (weight)		
Ounces	28.35	Grams	grams	0.0352	ounces
Pounds	0.453	Kilograms	kilograms	2.2046	pounds
short ton	0.907	metric ton	metric ton	1.10	short ton
	Volume		Volume		
fluid ounces	29.57	Milliliters	milliliters	0.03	fluid ounces
Quarts	0.95	Liters	liters	1.057	Quarts
Gallons	3.79	Liters	liters	0.26	gallons
cubic feet	0.03	cubic meters	cubic meters	35.3147	cubic feet
cubic yards	0.76456	cubic meters	cubic meters	1.308	cubic yards
Temperature			Temperature		
Fahrenheit	subtract 32 then multiply by 5/9ths	Celsius	Celsius	multiply by 9/5ths, then add 32	Fahrenheit
Force/Pressure		Force/Pressure	e		
pounds per square inch	6.895	Kilopascals	kilopascals	1.4504 x 10 ⁻¹	pounds per square inch

Source: Engineering Unit Conversions, M. R. Lindeburg, PE., Second Ed., 1990, Professional Publications, Inc., Belmont, California.

INTRODUCTION

This document serves as a notice of construction (NOC) application, in accordance with Washington Administrative Code (WAC) 246-247-060, and as a request for approval, in accordance with 40 Code of Federal Regulations (CFR) 61.07, for the E-525 Double-Shell Tank (DST) Transfer System Modifications Project that will modify certain DST systems and equipment that were not part of previously defined projects. These modifications are needed to meet current regulatory codes and support waste feed delivery (WFD) to the Waste Treatment Plant (WTP).

The total effective dose equivalent (TEDE) from all calendar year 2001 Hanford Site air emissions (point sources and diffuse and fugitive sources) was 0.49 mrem (Radionuclide Air Emissions report for the Hanford Site, calendar year 2001, DOE/RL-2002-20). The emissions resulting from the activities covered by this NOC, in conjunction with other operations on the Hanford Site, will not exceed the National Emission Standard of 10 millirem per year (40 CFR 61, Subpart H).

The potential unabated emissions from all associated activities for the E-525 Project are estimated to be 6.5E-03 mrem/yr total effective dose equivalent to the hypothetical maximally exposed individual (MEI). Activities that contribute to this estimate include pit work, excavation work and pipe cutting. This estimate is conservative for purposes of bounding the project activities.

This application also intends to provide notification of anticipated initial start-up, in accordance with 40 CFR 61.09(a)(1). It is requested that approval of this application will also constitute the U.S. Environmental Protection Agency (EPA) acceptance of the initial start-up notification. Written notification of the actual date of initial start-up, in accordance with 40 CFR 61.09(a)(2), will be provided at a later date.

1.0 FACILITY IDENTIFICATION AND LOCATION

Regulatory Citation: Name and address of the facility, and location (latitude and longitude) of the emission unit(s).

Work will be performed at the U.S. Department of Energy Hanford Site, 200 East and 200 West Areas, Richland, Washington, in the following tank farms: 241-AN, 241-AW, 241-AY, 241-AZ, and 241-SY. Work also will be performed in the 241-AR-204 Waste Unloading Facility and within the boundaries of 241-AZ-702 and the 242-A Evaporator Facility.

1.1 COORDINATES

Table 1. Emission Points For Each Work Area.

Facility	North Latitude	West Longitude
241-AN Tank Farm	46° N 33' 22"	119° W 30' 59"
241-AW Tank Farm	46° N 33' 10"	119° W 31' 03"
241-AY Tank Farm	46° N 33' 17"	119° W 31' 02"
241-AZ Tank Farm	46° N 33' 19"	119° W 31' 03"
241-SY Tank Farm	46° N 32' 26"	119° W 37' 40"
204-AR Building	46° N 33' 06"	119° W 31' 09"
242-A Evaporator	46° N 33' 09"	119° W 31' 01"
241-AZ-702 Building	46° N 33' 19"	119° W 31' 03"

2.0 RESPONSIBLE MANAGER

Regulatory Citation: Name, title, address, and phone number of the responsible manager.

Mr. R. J. Schepens, Manager Office of River Protection U.S. Department of Energy Post Office Box 450 Richland, Washington, 99352-0450 (509) 376-6677

3.0 PROPOSED ACTION

Regulatory Citation: Identify the type of proposed action for which this application is submitted:
(a) Construction of new emission units(s); (b) Modification of existing emission units(s); identify whether this is a significant modification; (c) Modification of existing unit(s), unregistered.

The proposed action is a non-significant modification of an existing emission unit. Significant is defined in WAC 246-247-030 as "the potential-to-emit airborne radioactivity at a rate that could

increase the TEDE to the maximally exposed individual (MEI) by at least 1.0 mrem/yr as a result of a proposed modification."

The objective of Project E-525 is to bring selected portions of the DST system into conformance with regulatory, safety, and contractual requirements. Project E-525, in performing these modifications, will bring these portions of the DST transfer system into compliance with Resource Conservation and Recovery Act of 1976 (RCRA) standards on or before June 30, 2005.

This work is responsive to a directive by the State of Washington, Department of Ecology (Ecology) to comply with DOE-RL-93-69, "Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement)," Milestone M-43-00, Upgrades Complete.

The modification will be accomplished by performing the following work package activities:

- 241-AZ-151 Catch Tank Bypass Package 1
- 241- AN and 241-AW Tank Farm Clean Out Box (COB) Transfer Line Modifications -Package 2
- 241-SY Tank Farm Transfer Line Modifications Package 3
- 204-AR Waste Transfer Facility Transfer Line Modification Package 4.

Work activities with potential-to-emit (PTE) for which approval is requested are pipe cutting, pit work, and soil excavation.

4.0 STATE ENVIRONMENTAL POLICY ACT OF 1971

Regulatory Citation: If this project is subject to the requirements of the State Environmental Policy Act (SEPA) contained in chapter 197-11 WAC, provide the name of the lead agency, lead agency contact person, and their phone number.

The proposed action is categorically exempt from the requirements of the *State Environmental Policy Act* under WAC 197-11, "SEPA Rules, Section WAC 197-11-845, Department of Social and Health Services."

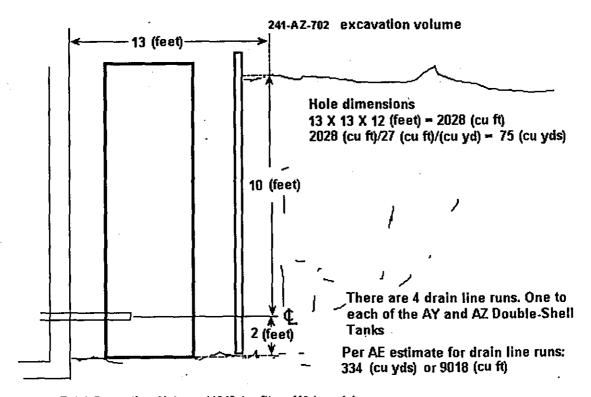
5.0 CHEMICAL AND PHYSICAL PROCESS

Regulatory Citation: Describe the chemical and physical processes upstream of the emission unit(s).

5.1 241-AZ-151 CATCH TANK BYPASS – PACKAGE 1

The description for the 241-AZ-151 catch tank bypass modification includes the installation of a new RCRA-compliant condensate distribution system for condensate from an existing DST ventilation system. The condensate distribution system will include a new fabricated tank system (i.e., secondary containment enclosure, tank, piping, pumps and controls) and new condensate distribution lines routed back to the ventilation return lines on each of the aging waste tanks (i.e., 241-AZ-101, 241-AZ-102, 241-AY-101, and 241-AY-102).

The newly fabricated tank system will be located outside the northwest corner of building 241-AZ-702. Most of the secondary containment structure will be located below grade (except for the cover that will be located above grade) to provide operator access and remote valve operation.


The lower level of the fabricated tank system will contain the receiver tank for the condensate coming from the AZ-PC-SP-1 seal pot via line AZ-503. Other components housed in the lower level will include the sump, sump suction line, tank suction piping, tank return piping, tank vent lines, instrument access risers, leak detection, and freeze protection, as required.

The upper level of the fabricated tank system will contain the distribution pumps, valves, instrumentation, and controls. Operator access will be provided as required (e.g., access ladder, hatch on system cover, mid-level grating to support operator). Distribution valves will be located to provide the ability to use remote valve actuators. Freeze protection for the piping, pumps, and valves will be used as required.

The AZ-PC-SP-1 seal pot is located in the 241-AZ-702 building and this seal pot serves as a collection point for condensate originating from the 241-AZ-702 ventilation system. The 241-AZ-702 ventilation system provides primary tank ventilation for the 241-AY and 241-AZ DSTs. The existing 241-AZ-151 catch tank would be isolated in a separate effort to support other commitments.

Currently there are two drain paths into the 241-AZ-151 catch tank that will remain active after June 30, 2005. Those two drain paths are the condensate from the 241-AZ-702 facility and the 241-AZ-801A floor drain. The 241-AZ-702 condensate drain line will be rerouted to the 241-AX tanks and also to the 241-AZ tanks. In addition, the 241-AZ-801A floor drain will be isolated.

Figure 1. Depiction of 241-AZ-151 excavation work.

Total Excavation Volume 11046 (cu ft) or 410 (cu yds)

5.2 241-AN & 241-AW CLEAN OUT BOX TRANSFER LINE MODIFICATIONS – PACKAGE 2

Some of the transfer lines associated with 241-AN tank farm, 241-AW tank farm, and the 242-A-Evaporator facilities were constructed with clean out boxes (COBs). A COB provides access to transfer lines in case of line plugging. Sixteen COBs have been identified on transfer lines that will remain operational after June 30, 2005.

These COBs will have the upper portion of the structure cut off, caps welded on the primary pipes and encasements, and the upper structure of the COB will be isolated and disposed. That modification will entail approximately 100 one-inch pipe cuts, 20 two-inch pipe cuts, and 10 three-inch pipe cuts. The primary transfer lines and encasement pipes will be capped on the branch section and welded to the COB structure. The COBs are not currently compliant for several reasons, including:

- The COBs do not have an operational drain and do not have adequate minimum volume to act as secondary containment for the primary pipe
- The COBs are not pressure tight and cannot meet the 60 psig pressure rating of the encasement piping system.

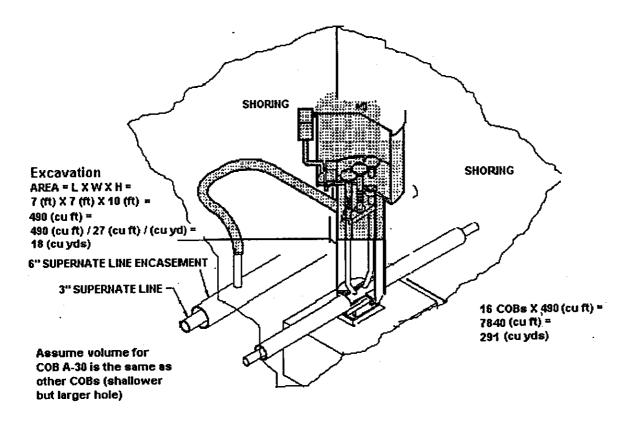
Therefore, because the transfer lines associated with COBs will remain operational, the COBs must either be modified to be regulatory compliant or deactivated/isolated and removed.

The AN and AW Farms COB design consists of a 24-inch diameter steel cylinder formed from 1/4-inch thick rolled steel plate and mounted on a 12-inch vertical encasement pipe. The vertical encasement extends about four feet below grade to the slurry transfer line. A concrete anchor block supports the COB, encasement, and transfer pipe.

The 16 COBs to be deactivated and/or isolated by the E-525 Project are:

AN FARM

COB-AN-7, COB-AN-8, COB-AN-9


AW FARM

 COB-AW-1, COB-AW-2, COB-AW-3, COB-AW-4, COB-AW-5, COB-AW-6, COB-AW-7, COB-AW-8, COB-AW-9, COB-AW-10, COB-AW-11, COB-AW-12

242-A Evaporator

COB-A-30

Figure 2. Clean Out Box Modification Work

In addition to the COB modifications and the 241-AN and 241-AW transfer line modifications, entry into tank farm pits will be necessary to complete this package. The pit work will involve removal of jumpers, post modification testing, and administrative isolation (e.g. lock and tag). Not all activities will be performed in each pit. The pits involved are those listed in the following table, Table 2.

Table 2. Clean Out Box Transfer Line Modification – Package 2

Pit	Number of Entries	Reason for Entries
241-AN-A	6	Post modification pressure tests and removal of jumpers.
241-AN-B	3	Post modification pressure testing, jumper removal, and lock and tag isolation.
241-AN-01A	3	Post modification pressure testing and jumper removal.
241-AN-04A	3	Post modification pressure testing and jumper removal.
241-AN-07A	3	Post modification pressure testing and jumper removal.
241-AW-02E	6	Post modification pressure testing and jumper removal.
241-AW-02D	1	Post modification pressure testing of encasements.
241-AW-05A	3	Post modification pressure testing and jumper removal.
241-AW-06A	3	Post modification pressure test and jumper removal.
241-AW-A	6	Post modification pressure testing and jumper removal.
241-AW-B	6	Post modification pressure testing and jumper removal.
242-A Evaporator	2	Post modification

5.3 SY TRANSFER LINE MODIFICATIONS – PACKAGE 3

Work under this package will involve excavating and removing the lines identified in Table 3. Each line will be removed, cut into sections, and disposed of in accordance with the tank farm solid waste disposal procedures. Pit walls will be core drilled as needed to accommodate the new pipe-in-pipe RCRA compliant configuration.

Excavation for the 241-SY tank farm line modification work will be between the pits listed in Table 3. Pipe trenches will be excavated to remove and install the new transfer lines. Excavation will be accomplished with the guzzler and hand digging.

Table 3. 241-SY Tank Farm Transfer Lines and Pit/Nozzle End Points.

Line Number	SIZE	End Point 1	End Point 2
SL-177	2"	102-SY-Pump Pit	SY-A-Valve Pit
SN-277	3"	102-SY Pump Pit	SY-A-Valve Pit
SN-285	3"	102-SY Pump Pit	SY-A-Valve Pit
SL-180	2"	SY-A-Valve Pit	SY-B-Valve Pit
SN-280	3"	SY-A-Valve Pit	SY-B-Valve Pit
SN-286	3"	102-SY-Pump Pit	SY-B-Valve Pit

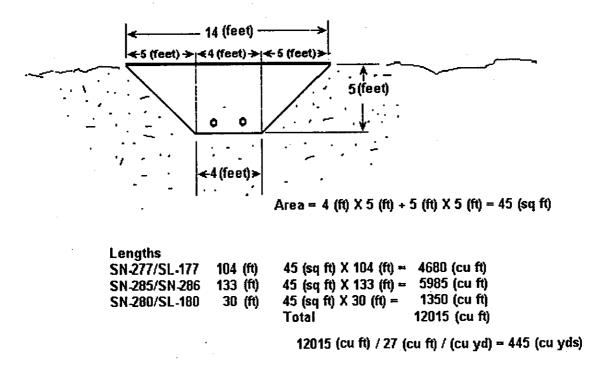
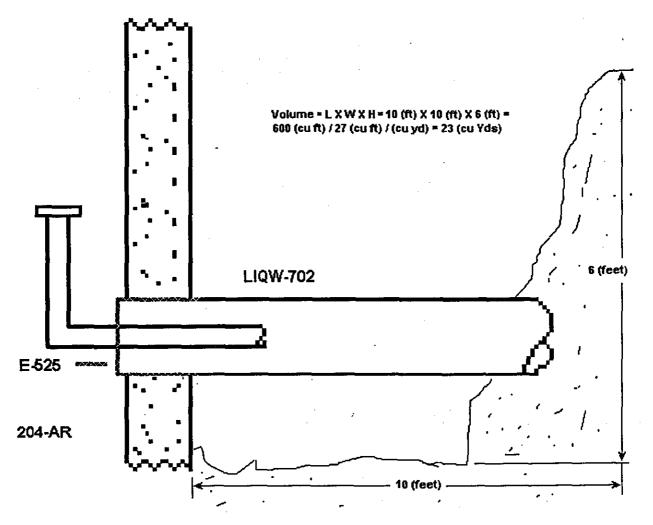

In addition to the transfer line modification work within this package, entry into tank farm pump and valve pits will be necessary. The pit work will involve such activities as removal of jumpers. Not all activities will be performed in each pit. The pits involved are listed in Table 4.

Table 4. SY Transfer Line Modification - Package 3.

Pit	Number Of Entries	Reason for Entries
241-SY-02A	4	Core drilling, installation for new nozzles and post modification pressure testing.
241-SY-A	6	Core drilling for new nozzles and post modification pressure testing.
241-SY-B	. 4	Core drilling for new nozzles and post modification pressure testing.

Figure 3. 241-SY Transfer Line Modifications - Package 3

E-525 SY Tank Farm Soil Estimate



5.4 204-AR TRANSFER LINE MODIFICATION – PACKAGE 4

The 204-AR Waste Unloading Facility will continue to be in operation after June 30, 2005. Waste transfer line LIQW-702 will be modified to extend the transfer line encasement through the pit wall. This pipe is buried approximately three and a half feet below grade, so the excavated area will be approximately 10' x 10' x 6'. A portion of the slab under an old laundry facility and a section of the asphalt surface adjacent to the doorstep of the facility will require demolition for access.

The new encasement section will be open-ended, upstream of the exterior wall seal plate. The obsolete air purge connection to the existing encasement pipe will be removed.

Figure 4. 204 AR Unloading Facility Waste Transfer Line Modification - Package 4.

6.0 ABATEMENT TECHNOLOGY

Regulatory Citation: Describe the existing and proposed (as applicable) abatement technology. Describe the bases for the use of the proposed system. Include expected efficiency of each control device, and the annual average volumetric flow rate(s) in meters³/sec for the emission units(s).

6.1 PIT WORK ABATEMENT

Pit work will be performed in accordance with as low as reasonably achievable control technology (ALARACT) Demonstrations, (HNF-4327) ALARACT Demonstrations 6, 13, and 14, TWRS ALARACT Demonstration for Pit Access, TWRS ALARACT Demonstration for Installation, Operation, and Removal of Tank Equipment, and TWRS ALARACT Demonstration for Pit Work, respectively.

Packaging and Transportation of waste will be handled in accordance with ALARACT Demonstration 4, TWRS ALARACT Demonstration For Packaging and Transportation of Waste (HNF-4327).

6.2 SOIL EXCAVATION ABATEMENT TECHNOLOGES

Because of the possibility of encountering previously undetected subsurface contamination, work within a tank farm will be performed in accordance with appropriate radiological controls and the River Protection and Implementation Project (RPP) as low as reasonably achievable. These requirements are carried out through work packages and associated radiological work permits.

Manual soil excavation activities will be performed in accordance with ALARACT Demonstration 5, TWRS ALARACT Demonstration for Soil Excavation (Using Hand Tools). For guzzler excavation outside of tank farms, the controls will be those in the latest WDOH approved NOC, AIR 98-1215. The potential-to-emit calculations were based on hand excavation.

For guzzler excavation, monitoring will be performed as discussed in the latest approved notices of construction for the guzzler. Because the guzzler NOC's use a release fraction of 1 instead of the 1.0E-03 release fraction for hand excavation, a log sheet will be used to ensure that the combined manual and guzzler excavations PTE value does not exceed the values used in the PTE calculation. The emissions associated with soil excavation and pipe cutting will be tracked using an operations log to assure that the annual possession quantity for each activity is not exceeded.

Clean soil piles may be moved from one place to another within the tank farm with heavy equipment (i.e., backhoe or front-end loader). Soil excavation outside the tank farm fence in non-contaminated areas also may be performed with heavy equipment. If contamination is discovered in areas to be excavated outside the tank farm fence, ALARACT 5 will be followed.

6.3 PIPE CUT ABATEMENT TECHNOLOGIES

Containment in accordance with the latest revision of RPP-7933, "Radiological Containment Selection, Design and Specification Guide," will be used for cutting of waste transfer lines and contaminated piping. Surveys of the exterior and/or interior of the pipe will be used to determine containment selection. Continuous health physics technician coverage is used to ensure control if unexpected changes in radiological conditions occur.

7.0 DRAWING OF CONTROLS

Regulatory Citation: Provide conceptual drawings showing all applicable control technology components from the point of entry of radionuclides into the vapor space to release to the environment.

Proposed controls are administrative. See Figures 1 through 4.

8.0 RADIONUCLIDES OF CONCERN

Regulatory Citation: Identify each radionuclide that could contribute greater than ten percent of the potential-to-emit TEDE to the MEI, or greater than 0.1 mrem/yr potential-to-emit TEDE to the MEI.

Radionuclides that could contribute greater than 10 percent of the PTE TEDE to the MEI or greater than 0.1 mrem/yr PTE TEDE to the MEI are: Sr-90, Am-241, and Cs-137. This is based upon applying the CAP 88 PC values listed in HNF-3602, Revision 1 (for the 200 West Area), directly to the inventory listed in Section 10. Appendices A through D contain tables that summarize the PTE for the project pipe cutting activities. Appendix E contains a table that summarizes the PTE for the pit work. Appendix contains a table that summarizes the PTE for soil excavation.

9.0 EFFLUENT MONITORING SYSTEM

Regulatory Citation: Describe the effluent monitoring system for the proposed control system. Describe each piece of monitoring equipment and its monitoring capability, including detection limits, for each radionuclide that could contribute greater than ten percent of the potential-to-emit TEDE to the MEI, or greater than 0.1 mrem/yr potential-to-emit TEDE to the MEI, or greater than twenty-five percent of the TEDE to the MEI, after controls. Describe the method for monitoring or calculating those radionuclide emissions. Describe the method with detail sufficient to demonstrate compliance with the applicable requirements.

The potential, unabated total effective onsite dose for all associated activities for the E-525 Project is 6.5E-03 mrem/yr. Therefore, in accordance with 40 CFR 61, Subpart H, continuous monitoring will not be performed to verify emissions.

Soil Excavation

For manual excavation, monitoring will be performed as discussed in the latest approved version of ALARACT Demonstration 5, ALARACT Demonstration for Soil Excavation (Using Hand Tools, HNF-4327. For guzzler excavation, monitoring will be performed as discussed in the latest approved NOCs for the guzzler, AIR 98-037 and AIR 98-1215.

Pit Work

Monitoring will be performed as discussed in the latest approved version of ALARACT Demonstrations 6, ALARACT Demonstrations for Pit Work; 13, ALARACT Demonstration for Installation, Operation, and Removal of Tank Equipment; and 14, ALARACT Demonstration for Pit Work. If a portable temporary radioactive air emission unit is used, monitoring will be performed as discussed in the latest approved notice of construction for the portable temporary radioactive air emission unit.

Pipe Cuts

Continuous monitoring by a health physics technician will occur during cutting of the pipe. Contamination surveys will be performed as required by the latest revision of RPP-7933.

10.0 ANNUAL POSSESSION QUANTITY

Regulatory Citation: Indicate the annual possession quantity for each radionuclide.

The annual possession quantity in Tanks 241-AW-102 and 241-SY-101 consists of the highest curie value for each radionuclide listed in Tables 5 and 6. The analyte list and data listed in Tables 5 and 6 are from the Tank Waste Information Network System 3 database, "Best Basis Inventory, Best Basis Summary" as of December 2002. Refer to the respective appendices where the annual possession quantity, calculations, and assumptions are provided for each activity.

Table 5. Tank Inventory Data for Tank 241-AW-102.

Analyte	Total Inventory (Ci)
3H	2.18E+00
14C	2.06E+00
59Ni	7.17E-01
60Co	2.60E+01
63Ni	7.05E+01
79Se	1.97E-00
90Sr	9.62E+04
90Y	9.62E+04
93Zr	1.58E+01
93mNb	1.51E+01
99Tc	4.06E+02
106Ru	5.52E-05
113mCd	6.50E+01
125Sb	3.00E+01
126Sn	2.17E+00
129I	3.65E-01
134Cs	2.01E+00
137Cs	6.00E+05
137mBa	5.67E+05
151Sm	1.20E+04
152Eu	3.00E+00
154Eu	5.34E+01
155Eu	6.61E+01

Analyte	Total Inventory (Ci)
226Ra	1.63E-04
^{227Ac}	1.86E-03
228Ra	9.77E-02
229Th	2.51E-03
231Pa	4.40E-03
232Th	1.11E-02
232U	3.66E-01
233U	1.50E-00
234U	1.41E-00
235U	5.43E-02
236U	1.01E-01
237Np	1.81E+01
238Pu	5.04E+00
238U	1.03E-00
239Pu	6.57E+01
240Pu	1.56E+01
241Am	3.18E+02
241Pu	3.30E+02
242Cm	6.24E+01
242Pu	1.91E-03
243Am	2.69E-02
243Cm	9.56E-02
244Cm	1.78E-00

Table 6. Tank Inventory Data for Tank 241-SY-101.

	Table C. Talk invento
Analyte	Total Inventory (Ci)
3H	8.14E+02
14C	3.71E+00
59Ni	1.10E+00
60Co	8.16E+01
63Ni	1.03E+02
79Se	8.92E-01
90Sr	7.15E+04
90Y	7.15E+04
93Zr	5.78E+00
93mNb	5.26E+00
99Tc	9.32E+02
106Ru	9.37E-05
113mCd	1.11E+02
125Sb	5.23E+01
126Sn	3.69E+00
1291	7.67E-01
134Cs	. 1.31E+00
137Cs	8.91E+05
137mBa	8.43E+05
151Sm	2.05E+04
152Eu	5.21E+00
154Eu	5.56E+02
155Eu	6.37E+02

Analyte	Total Inventory (Ci)
226Ra	2.73E-04
227Ac	2.84E-03
228Ra	1.05E-01
229Th ·	4.71E-03
231Pa	7.52E-03
232Th	2.15E-02
232U	1.00E-01
233U	4.11E-01
234U	1.16E-01
235U	4.69E-03
236U	3.64E-03
237Np	7.21E-01
238Pu	1.15E+00
238U	1.05E-01
239Pu	4.14E+01
240Pu	7.05E+00
241Am	4.58E+02
241Pu	5.92E+01
242Cm	1.20E+00
242Pu	4.56E-04
243Am	1.63E-02
243Cm	9.70E-02
244Cm	8.51E-01

11.0 PHYSICAL FORM

Regulatory Citation: Indicate the physical form of each radionuclide in inventory: Solid, particulate solids, liquid, or gas.

Radionuclides in the tank are in the form of particulate solids, liquids, and gases. Gaseous radionuclides are expected to be H-3, C-14, Ru-106, and I-129. Radionuclides in the soil and pits are expected to be particulates.

12.0 RELEASE FORM

Regulatory Citation: Indicate the release form of each radionuclide in inventory: Particulate solids, vapor, or gas. Give the chemical form and ICRP 30 solubility class, if known.

The radionuclides are all assumed to be released as particulate except for H-3 and C-14. These are assumed to be released as a combination of particulates and gas. In addition, though Ru-106 and I-129 are assumed to be released as particulate, it is not assumed that the high-efficiency particulate air (HEPA) filters serve as effective abatement.

13.0 RELEASE RATES

Regulatory Citation: Release rates. (a) New emission unit(s): Give predicted release rates without any emissions control equipment (the potential-to-emit) and with the proposed control equipment using the efficiencies described in subsection (6) of this section. (b) Modified emission unit(s): Give predicted release rates without any emissions control equipment (the potential-to-emit) and with the existing and proposed control equipment using the efficiencies described in subsection (6) of this section. Provide the latest year's emissions data or emissions estimates. In all cases, indicate whether the emission unit is operating in a batch or continuous mode.

Release rates are determined for pipe cuts by multiplying the annual possession quantity determined in Section 10.0 by a release fraction of 1.0E-03 and 1.0E+00 (40 CFR 61) (Appendix D). Appendices A through D are where the calculations and assumptions for the project pipe cutting activities are shown.

The unabated emissions estimate for project pit work was based on smearable contamination data from the 241-AN-A valve pit. The 241-AN-A valve pit is an average size pit that was selected because it had the highest levels of smearable contamination—based on Radiological Survey Report DSTP-00268. The calculations and assumptions for the E-525 Project pit work may be found in Appendix E. Calculations are based on a continuous operation over the course of a calendar year.

Unabated emissions for manual soil excavation activities were determined by assuming the entire volume of soil excavated (50,000 feet) was at the same contamination concentration and the 40 CFR 61, Appendix D release factor for particulates was applied to the total volume. Release rates are based on continuous operation over the course of a calendar year. The calculations and assumptions for manual soil excavation can be found in appendix F.

The TEDE from all calendar year 2001 Hanford Site air emissions (point sources and diffuse and fugitive sources) was 0.49 mrem (DOE/RL-2002-20). The emissions resulting from the activities covered by this NOC, in conjunction with other operations on the Hanford Site, will not exceed the National Emissions Standard of 10 millirem per year (40 CFR 61, Subpart H).

14.0 LOCATION OF THE MAXIMALLY EXPOSED INDIVIDUAL

Regulatory Citation: Identify the MEI by distance and direction from the emission unit(s). The MEI is determined by considering distance, windrose data, presence of vegetable gardens, and meat or milk producing animals at unrestricted areas surrounding the emission unit.

The MEI is determined using CAP-88 PC dispersion factors, which are derived for use on the Hanford Site and published in HNF-3602, "Calculating Potential-to-Emit Releases and Doses for Facility Environmental Monitoring Plans and Notices of Construction," Revision 1.

Values used for Project E-525 came from Tables 4-9 and 4-10 of HNF-3602, Rev. 1, for the 200 East and West Areas, with an effective release height <40 meters. Tables 4-9 and 4-10 give values in two separate columns for an offsite maximum public receptor (MPR) and an onsite MPR. Values from both columns were used to determine the maximum dose. Their results showed the maximum dose received by the onsite MPR. For the 200 East Area, the maximum public receptor is 20,200 meters east-southeast of the 200 East Area and for the 200 West Area, maximum public receptor location is 18,310 meters east southeast of the 200 West Areas, Laser Interferometer Gravitational Observatory.

15.0 TOTAL EFFECTIVE DOSE EQUIVALENT TO THE MAXIMALLY EXPOSED INDIVUDAL

Calculate the TEDE to the MEI using an approved procedure (see WAC 246-247-085. For each radionuclide identified in subsection (8) of this section, determine the TEDE to the MEI for existing and proposed emission controls, and without any emission controls (the potential-to-emit) using the release rates from subsection (13) of this section. Provide all input data used in the calculations.

Work activities with PTE for which approval is requested are pipe cutting, pit work, and soil excavation. Emission and dose calculations for pipe cutting are shown in Appendices A, B, C, and D. Emission and dose calculations for pit work are shown in Appendix E, and potential unabated emissions for soil excavation activities can be found in Appendix F.

The TEDE to the MEI resulted in emissions to the nearest offsite receptor of approximately 6.5E-03 mrem/yr. The activities and corresponding doses contributing to that 6.5E-03 mrem/yr are shown in Table 7:

Table 7. Corresponding Doses.

Activities	TEDE TO THE MEI mrem/year (Unabated)
1" Pipe Cuts (onsite) East Area	4.6E-04
1" Pipe Cuts (offsite) East Area	1.5E-03
3" Pipe Cuts (onsite) West Area	1.5E-04
3" Pipe Cuts (offsite) West Area	1.4E-03
Pit Work	8.0E-06
Soil Excavation	2.9E-03
TOTAL	6.5E-03

16.0 COST FACTOR IF NO ANALYSIS

Provide cost factors for construction, operation, and maintenance of the proposed control technology components and system, if a BARCT or ALARACT demonstration is not submitted with the NOC.

Equivalency of an ALARACT demonstration of this type of work is provided in Section 6.0, "Proposed Controls," and Section 9.0, "Monitoring." Therefore, no cost factors are provided.

17.0 DURATION OR LIFETIME

Regulatory Citation: Provide an estimate of the lifetime for the facility process with the emission rates provided in this application.

The E-525 Project construction activities are expected to conclude approximately 18 months after its onset, and the project is scheduled to begin construction in the September 2003 time frame, which would bring it to a conclusion by June 30, 2005.

18.0 STANDARDS

Regulatory Citation: "Indicate which of the following control technology standards have been considered and will be complied with in the design and operation of the emission unit(s) described in this application: ..."

ASME/ANSI AG-1, ASME/ANSI N509, ASME/ANSI N510, ANSI/ASME NQA-1, 40 CFR 60, Appendix A Methods 1, 1A, 2, 2A, 2C, 2D, 4, 5, and 17, and ANSI N13.1

The December 18, 1998, WDOH-approved Categorical Guzzler NOC (AIR 98-1215), and the December 23, 1997, WDOH-approved Tank Farm A Complex NOC (AIR 98-037) discuss how the guzzler meets the standards.

Other activities described in this NOC such as hand excavation, pipe cutting activities, and pit work do not use powered ventilation units or HEPA filtration; therefore, the following standards do not apply:

- American Society of Mechanical Engineers (ASME)/American National Standards
 Institute (ANSI) AG-1 This equipment-specific code consists of five primary sections
 which include fans, ductwork, HEPA filters, dampers, and quality assurance.
- ASME/ANSI N509 This standard deals with the individual nuclear air cleaning components and how these relate to the overall system.
- ASME/ANSI N510 This standard pertains to the testing of nuclear air cleaning systems.
- ANSI/ASME NQA-1 This standard pertains to the National Emission Standards for Hazardous Air Pollutants Quality Assurance Project Plan for radioactive airborne emissions.
- 40 CFR, Appendix A This standard pertains to sampling capability of ventilation sources.
- ANSI N13.1 This standard pertains to continuous monitoring of ventilation systems.

Although the standards listed above do not apply to the design and operations of the subject emission unit, activities will be performed according to the controls and monitoring activities identified in Section 6.0 to ensure safe operations of the project.

19.0 REFERENCES

- 40 CFR, "Protection of Environment," Appendix A, Code of Federal Regulations, as amended.
- 40 CFR 60, "Standards for Performance of New Stationary Sources," Code of Federal Regulations, as amended.
- 40 CFR 61, "National Emission Standards for Hazardous Air Pollutant." Code of Federal Regulations, as amended.
- AIR 98-037, Notice of Construction, Washington State Department of Health "Short Form Radioactive Air Emissions Notice of Construction (NOC) For Guzzler Excavation and Backfilling Activities In Support of the 200 East Area A Farm Complex," letter dated January 30, 1998.
- AIR 98-1215, Notice of Construction, Washington State Department of Health "Categorical Guzzler Notice of Construction," letter dated December 18, 1998.
- ANSI/ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities, American Society of Mechanical Engineers, New York, New York.
- DOE/RL-2002-20, Radionuclide Air Emissions Report for the Hanford Site, calendar year 2002.
- HNF-3602, Revision 1, Calculating Potential-to-Emit Release and Dose for FEMP and NOCs. Fluor Hanford, Richland, Washington.

- HNF-4327, Revision 1A, 2002, Control of Airborne Radioactive Emissions for Frequently Performed TWRS Work Activities (ALARACT Demonstrations), CH2M HILL Hanford Group, Inc., Richland, Washington.
- RPP-7933, Revision 0, 2001, Radiological Containment Selection, Design & Specification Guide, CH2M HILL Hanford Group, Inc., Richland, Washington.
- WAC 197-11-845, State Environmental Policy Act, "SEPA Rules, Department of Social and Health Services," Washington Administration Code, as amended.
- WAC 246-247, "Radiation Protection Air Emissions," Washington Administrative Code, as amended.

APPENDIX A

EMISSION AND DOSE CALCULATIONS FOR 1" PIPE CUTS (ONSITE) EAST AREA

APPEND	OIX A - EM			OSE CALC		NS FOR 1	"PIPE CU	rts,
		((DNSIT	E) EAST A	REA			
I inch, Schedule 40 pipe	1.05	Inch inside Diameter						
Area of 1" pipe interior	0.86	inches ²						
Total pipe volume (TPV), 12" length	0.17	liters			•			
Release Fraction (RF)	1.00E-03	•						
Total Waste in Tank (TW)	3.03E+05	liters			,			
Analyte	Tank Inventory	Average Concentration (Ci/L)	Number of Pipe Cuts	annual possession quantity (ci)	Potential to Emit (ci/yr)	Unit Dose Factor, mrem/Ci (onsite)*	TEDE to the MEI (mrem/yr)	Percentage of Potential-to- emit Dose
	A	B=A/TW	С	D=B*C*TPV	E=D*RF	F	G=E*F	H=G/(G)
3H	2.18E+00			1.22E-04	1.22E-07			
14C	2.06E+00	6.80E-06			1.16E-07			
59Ni	7.17E-01	2.37E-06	t					
60Co	2.60E+01	8.59E-05			1.46E-06			
63Ni	7.05E+01	2.33E-04			3.96E-06			
79Se 90Y	1.97E+00	6.51E-06 3.18E-01	Y					
90Sr	9.62E+04 9.62E+04	3.18E-01	100					
93mNb	1.51E+01	4.99E-05				+	· · · · · · · · · · · · · · · · · · ·	
93Zr	1.58E+01	5.22E-05		•				0.00%
99Tc	4.06E+02	1.34E-03				***		
106Ru	5.52E-05	1.82E-10						
113mCd	6.50E+01	2.15E-04			 			
125Sb	3.00E+01	9.91E-05						
126Sn	2.17E+00							
1291	3.65E-01	1.21E-06						
134Cs	2.01E+00			+				
137Cs	6.00E+05 5.67E+05		7			 		
137mBa 151Sm	1.20E+04							
152Eu	3.00E+00		-					
154Eu	5.34E+01			***				
155Eu	6.61E+01	1						8 0.01%
226Ra	1.63E-04	 	100	9.14E-09	9.14E-12	2.50E-0	2.29E-1	
228Ra	9.77E-02	3.23E-07	100	5.48E-06	5.48E-09	7.00E-02		
227Ac	1.86E-03	6.14E-09						
229Th	2.51E-03			,				
232Th	1.11E-02							
231Pa	4.40E-03	·		t				
232U	3.66E-01			t				
233U	1.50E+00		1		•			
234U	1.41E+00		7		-			
235U	5.43E-02		T .		+			
236U	1.01E-01	1	r				1	
238U	1.81E+01							
237Np 238Pu	5.04E+00							
239Pu	6.57E+01					T		
240Pu	1.56E+01							

APPENI	APPENDIX A - EMISSION AND DOSE CALCULATIONS FOR 1"PIPE CUTS, (ONSITE) EAST AREA										
l inch, Schedule 40 pipe	•	Inch inside Diameter									
Area of 1" pipe interior	0.86	inches²						. :			
Total pipe volume (TPV), 12" length	0.17	liters									
Release Fraction (RF)	1.00E-03										
Total Waste in Tank (TW)	3.03E+05	liters									
Analyte	Tank Inventory	Concentration	Number of Pipe Cuts		Potential to Emit (ci/yr)	Unit Dose Factor, mrem/Ci (onsite)*	TEDE to the MEI (mrem/yr)	Percentage of Potential-to- emit Dose			
241Pu	3.30E+02	1.09E-03	100	1.85E-02	1.85E-05	1.50E-01	2.78E-06	0.61%			
242Pu	1.91E-03	6.31E-09	100	1.07E-07	1.07E-10	9.10E+00	9.75E-10	0.00%			
241 Am	3.18E+02	1.05E-03	100	1.78E-02	1.78E-05	1.50E+01	2.68E-04	58.60%			
243Am	2.69E-02	8.88E-08	100	1.51E-06	1.51E-09	1.50E+01	2.26E-08				
242Cm	6.24E+01	2.06E-04	100	3.50E-03	3.50E-06	5.00E-01	1.75E-06	0.38%			
243Cm	9.56E-02	3.16E-07	100	5.36E-06	5.36E-09	1.00E+01	5.36E-08	0.01%			
244Cm	1.78E+00	5.88E-06	100	9.99E-05	9.99E-08	8.00E+00	7.99E-07	0.17%			
				7.70E+01	7.70E-02		4.57E-04	100.00%			

APPENDIX B

EMISSION AND DOSE CALCULATIONS FOR 1" PIPE CUTS (OFFSITE) EAST AREA

APPEND	APPENDIX B - EMISSION AND DOSE CALCULATIONS FOR 1"PIPE CUTS, (OFFSITE) EAST AREA										
1 inch, Schedule 40 pipe	1.05	Inch inside	71.1211	L) LASI A	TUR.			<u> </u>			
i inch, Schedule 40 pipe		Diameter									
Area of 1" pipe interior	0.86	inches ²			•						
Total pipe volume (TPV), 12" length	0.17	liters	ļ	•							
Release Fraction (RF)	1.00E-03	· · · · · · · · · · · · · · · · · · ·						·			
Total Waste in Tank (TW)	3.03E+05	liters									
Analyte	Tank Inventory	Average Conc. (Ci/L)	Number of Pipe Cuts	annual possession quantity (ci)	Potential to Emit (ci/yr)	Unit Dose Factor, mrem/Ci (offsite)*	TEDE to the MEI (mrem/yr)	Percentage of Potential-to- emit Dose			
	Α	B=A/TW	С	D=B*C*TPV	E=D*RF	F	G=E*F	H=G/(_G)			
3H	2.18E+00		100	1.22E-04	1.22E-07	2.50E-05	3.06E-12	0.00%			
14C	2.06E+00							0.00%			
59Ni	7.17E-01	2.37E-06									
60Co	2.60E+01	8.59E-05				2.50E-01					
63Ni	7.05E+01	2.33E-04		3.96E-03	3.96E-06	2.60E-04	1.03E-09	0.00%			
79Se	1.97E+00	6.51E-06	100	1.11E-04	1.11E-07	1.30E-01	1.44E-08	0.00%			
90Y	9.62E+04	3.18E-01	100	5.40E+00	5.40E-03	3.40E-04	1.84E-00	0.12%			
90Sr	9.62E+04	3.18E-01	100	5.40E+00	5.40E-03	1.10E-01	5.94E-04	38.96%			
93mNb	1.51E+01	4.99E-05	100	8.47E-04	8.47E-07	2.10E-03	1.78E-09	0.00%			
93Zr	1.58E+01	5.22E-05	100	8.86E-04	8.86E-07	5.80E-03	5.14E-09	0.00%			
99Tc	4.06E+02	1.34E-03	100	2.28E-02	2.28E-05	2.30E-02	5.24E-0	0.03%			
106Ru	5.52E-05	1.82E-10	100	3.10E-09	3.10E-12	1.60E-02	4.96E-14	0.00%			
113mCd	6.50E+01	2.15E-04	100	3.65E-03	3.65E-06	1.30E-01					
125Sb	3.00E+01	9.91E-05	100	1.68E-03	1.68E-06	2.60E-02	4.38E-08				
126Sn	2.17E+00	7.17E-06	100	1.22E-04	1.22E-07	4.70E-02	5.72E-09	0.00%			
1291	3.65E-01	1.21E-06	100	2.05E-05	2.05E-08	1.50E-06	3.07E-14				
134Cs	2.01E+00			1.13E-04	1.13E-07	7.80E-02	8.80E-0	0.00%			
137Cs	6.00E+05		1	3.37E+01	3.37E-02	2.10E-02	7.07E-04	46.39%			
137mBa	5.67E+05	1.87E+00	100	3.18E+01	3.18E-02	8.60E-14	2.74E-1	5 0.00%			
151Sm	1.20E+04	3.96E-02	100	6.73E-01	6.73E-04	5.80E-04	3.90E-0				
152Eu	3.00E+00	9.91E-06	100	1.68E-04	1.68E-07	1.90E-01	3.20E-0				
154Eu	5.34E+01						4.49E-0				
155Eu	6.61E+01		+				2.34E-0				
226Ra	1.63E-04										
228Ra	9.77E-02							0.00%			
227Ac	1.86E-03							9 0.009			
229Th	2.51E-03		+					9 0.009			
232Th	1.11E-02			÷) .			3.86E-0				
231Pa	4.40E-03		*		1						
232U	3.66E-01			2.05E-05	2.05E-08	8.60E+0					
233U	1.50E+00	+		8.42E-0							
234U	1.41E+00		Υ	7.91E-0	7.91E-08						
235U	5.43E-02										
236U	1.01E-01		-			2.30E+0	0 1.30E-0				
238U	1.03E+00	4				2.10E+0	0 1.21E-0				
237Np	1.81E+01				1		0 9.04E-0	6 0.59			
238Pu	5.04E+00					···					
239Pu	6.57E+01										
239Fu 240Pu	1.56E+01				7						

APPENI	APPENDIX B - EMISSION AND DOSE CALCULATIONS FOR 1"PIPE CUTS, (OFFSITE) EAST AREA										
1 inch, Schedule 40 pipe	1	Inch inside Diameter									
Area of 1" pipe interior	0.86	inches ²									
Total pipe volume (TPV), 12" length	0.17	liters		•							
Release Fraction (RF)	1.00E-03										
Total Waste in Tank (TW)	3.03E+05	liters									
Analyte	Tank Inventory	Average Conc. (Ci/L)	Number of Pipe Cuts		Potential to Emit (ci/yr)	Unit Dose Factor, mrem/Ci (offsite)*	TEDE to the MEI (mrem/yr)	Percentage of Potential-to- emit Dose			
241 Pu	3.30E+02	1.09E-03	100	1.85E-02	1.85E-05	1.00E-01	1.85E-06	0.12%			
242Pu	1.91E-03			1.07E-07	1.07E-10	6.1E+00	6.54E-10	0.00%			
241 Am	3.18E+02			1.78E-02	1.78E-05	9.80E+00	1.75E-04	11.47%			
243Am	2.69E-02	8.88E-08	100	1.51E-06	1.51E-09	9.80E+00	1.48E-08	0.00%			
242Cm	6.24E+01	2.06E-04	100	3.50E-03	3.50E-06	3.20E-01	1.12E-06	0.07%			
243Cm	9.56E-02	3.16E-07	100	5.36E-06	5.36E-09	6.60E+00	3.54E-08	0.00%			
244Cm	1.78E+00	5.88E-06	100	9.99E-05	9.99E-08	5.20E+00	5.19E-07	0.03%			
				7.70E+01	7.70E-02		1.52E-03	100.00%			

APPENDIX C

EMISSION AND DOSE CALCULATIONS FOR 3" PIPE CUTS (ONSITE) WEST AREA

	Inch inside	TITOLIC	E) WEST A	NIA			
			· 				,
ľ	Diameter						
7.39	inches²	i				•	
1.45	liters						
1.00E-03	-						
1.12E+06	liters						
nk ventory	Average Conc. (Ci/L)	Number of Pipe Cuts	annual possession quantity (ci)	Potential to Emit (ci/yr)	mrem/Ci	TEDE to the MEI (mrem/yr)	Percentage of Potential-to- emit Dose
A	B=A/TW	С	D=B*C*TPV	E=D*RF	F	G=E*F	H=G/(G)
8.14E+02	7.27E-04			1.06E-05			
3.71E+00				•		•	0.00%
1.10E+00	9.83E-07						
8.16E+01							0.24%
1.03E+02							
7.15E+04							0.18%
			1	1		 	
							0.00%
							
							
			•				
							
				 		·	
							
			,	,			
							
		 			•		
							0.02%
							
6.37E+02							
2.73E-04							
1.05E-01		•				1.08E-10	
2.84E-03				,			
4.71E-03	4.21E-09						
2.15E-02	1.92E-08						
7.52E-03		•					
1.00E-01							
4.11E-01		+				· 	
1.16E-01		·					
4.69E-03			***				
3.64E-03		+					
1.05E-01						1	
7.21E-01		7		, ,			
1.15E+00				. 			
4.14E+01	3.70E-05 6.30E-06		5.38E-04 9.15E-05	•			
8 3 1 8 1 8 7 7 4 4 5 7 1 4 5 7 1 4 5 7 1	1.00E-03 1.12E+06 1.12E+06 1.12E+06 1.12E+06 1.12E+06 1.12E+00 1.12E+00	1.00E-03 1.12E+06 liters 1.12E+00	1.00E-03 1.12E+06 liters A A B=A/TW C 3.14E+02 7.27E-04 10 3.71E+00 3.31E-06 10 1.10E+00 9.83E-07 10 3.16E+01 7.29E-05 10 1.03E+02 9.20E-05 10 3.92E-01 7.97E-07 10 7.15E+04 6.39E-02 10 7.15E+04 6.39E-02 10 5.26E+00 4.70E-06 10 5.78E+00 5.16E-06 10 5.78E+00 5.16E-06 10 5.78E+00 5.16E-06 10 5.32E+02 8.33E-04 10 9.37E-05 8.37E-11 10 1.11E+02 9.92E-05 10 5.23E+01 4.67E-05 10 3.69E+00 3.30E-06 10 7.67E-01 6.85E-07 10 1.31E+00 1.17E-06 10 8.91E+05 7.96E-01 10 8.43E+05 7.53E-01 10 5.21E+00 4.66E-06 10 5.56E+02 4.97E-04 10 6.37E+02 5.69E-04 10 2.73E-04 2.44E-10 10 1.05E-01 9.38E-08 10 2.15E-02 1.92E-08 10 1.16E-01 1.04E-07 10 1.16E-01 1.04E-07 10 1.16E-01 1.04E-07 10 1.15E+00 1.05E-01 10 1.15E+00 1.05E-01 10 1.16E-01 1.04E-07 10 1.15E+00 1.05E-01 10 1.15E+00 1.03E-06 10	1.00E-03 1.12E+06 liters A A B=A/TW C D=B*C*TPV 3.14E+02 7.27E-04 10 1.06E-02 3.71E+00 3.31E-06 10 4.82E-05 1.10E+00 9.83E-07 10 1.43E-05 3.16E+01 7.29E-05 10 1.06E-03 8.92E-01 7.97E-07 10 1.16E-05 7.15E+04 6.39E-02 10 9.28E-01 7.15E+04 6.39E-02 10 9.28E-01 7.15E+04 6.39E-02 10 9.28E-01 7.25E+00 4.70E-06 10 6.83E-05 7.82E+00 5.16E-06 10 7.21E-05 9.32E+02 8.33E-04 10 1.21E-02 9.37E-05 8.37E-11 10 1.22E-09 9.37E-05 8.37E-11 10 1.22E-09 1.11E+02 9.92E-05 10 1.44E-03 5.23E+01 4.67E-05 10 6.79E-04 3.69E+00 3.30E-06 10 4.79E-05 7.67E-01 6.85E-07 10 9.96E-06 8.91E+05 7.96E-01 10 1.16E+01 8.43E+05 7.53E-01 10 1.09E+01 8.43E+05 7.53E-01 10 1.09E+01 2.05E+04 1.83E-02 10 2.66E-01 1.05E-01 9.38E-08 10 1.26E-06 1.05E-01 9.38E-08 10 1.36E-06 1.05E-01 9.38E-08 10 1.36E-06 1.05E-01 9.38E-08 10 1.36E-06 1.00E-01 8.93E-08 10 1.36E-06 7.52E-03 6.72E-09 10 5.49E-06 1.00E-01 1.04E-07 10 5.34E-06 1.05E-01 1.04E-07 10 5.34E-06 1.05E-01 1.04E-07 10 5.34E-06 1.05E-01 9.38E-08 10 1.36E-06 7.21E-01 6.44E-07 10 5.34E-06 7.21E-01 6.44E-07 10 5.36E-06 1.05E-01 9.38E-08 10 1.36E-06 7.21E-01 6.44E-07 10 5.36E-06 1.15E+00 1.03E-06 10 1.49E-07 1.15E+00 1.03E-06 10 1.49E-07 1.15E+00 1.03E-06 10 1.49E-07	1.00E-03 1.12E+06 liters 1.13E+00 liters 1.13E+00 liters 1.14E+02 liters 1.14E+02 liters 1.14E+02 liters 1.14E+03 liters 1.14E+04 liters 1.14E+05 liters 1.14E+06 liters 1.11E+06 liters 1.11E+07 liters 1.11E+08 liters 1.11E+09 liter	1.100E-03	1.10E+06 liters

APPENI	OIX C - EM			OSE CALC E) WEST A		IS FOR 3	"PIPE CU	TS,
3 inch, Schedule 40 pipe		Inch inside Diameter						•
Area of 3" pipe interior	7.39	inches ²						
Total pipe volume (TPV), 12" length	1.45	liters						
Release Fraction (RF)	1.00E-03							
Total Waste in Tank (TW)	1.12E+06	liters						
Analyte	Tank Inventory		Number of Pipe Cuts	annual possession quantity (ci)	Potential to Emit (ci/yr)	Unit Dose Factor, mrem/Ci (onsite)*	TEDE to the MEI (mrem/yr)	Percentage of Potential-to- emit Dose
%241Pu	5.92E+01	5.29E-05	10	7.69E-04	7.69E-07	1.60E-01	1.23E-07	0.08%
242Pu	4.56E-04	4.07E-10	10	5.92E-09	5.92E-12	1.00E+01	5.92E-11	0.00%
241 Am	4.58E+02	4.09E-04	10	5.95E-03	5.95E-06	1.70E+01	1.01E-04	66.93%
243Am	1.63E-02	1.46E-08	10	2.12E-07	2.12E-10	1.70E+01	3.60E-09	0.00%
242Cm	9.70E-02	8.67E-08	10	1.26E-06	1.26E-09	5.70E-01	7.18E-10	0.00%
243Cm	9.70E-02	8.67E-08	10	1.26E-06	1.26E-09	1.20E+01	1.51E-08	0.01%
244Cm	8.51E-01	7.60E-07	10	1.11E-05	1.11E-08	9.00E+00	9.95E-08	0.07%
				2.47E+01	2.47E-02		1.51E-04	100.00%

APPENDIX D

EMISSION AND DOSE CALCULATIONS FOR 3"PIPE CUTS, (OFFSITE) WEST AREA

APPENDIX D - EMISSION AND DOSE CALCULATIONS FOR 3" PIPE CUTS, (OFFSITE) WEST AREA										
3 inch, Schedule 40 pipe	3.07	Inch inside Diameter		2) 112011						
Area of 3" pipe interior	7.39	inches ²		٠.						
Total pipe volume (TPV), 12" length	1.45	liters								
Release Fraction (RF)	1.00E-03									
Total Waste in Tank (TW)	3.03E+05	liters	,							
Analyte	Tank Inventory	Average Conc. (Ci/L)	Number of Pipe Cuts	annual possession quantity (ci)	Potential to Emit (ci/yr)	Unit Dose Factor, mrem/Ci (offsite)*	TEDE to the MEI (mrem/yr)	Percentage of Potential-to- emit Dose		
	A	B=A/TW	С	D=B*C*TPV	E=D*RF	F	G=E*F	H=G/(G)		
3H	8.14E+02	2.69E-03	10	3.91E-02		2.50E-05	9.77E-10	7		
14C	3.71E+00	1.23E-05	10	1.78E-04	1.78E-07	2.00E-03	3.56E-10	0.00%		
59Ni	1.10E+00	3.63E-06	10	5.28E-05	5.28E-08	2.40E-04	1.27E-11	0.00%		
60Co	8.16E+01	2.69E-04	10		3.92E-06		7.44E-07			
63Ni	1.03E+02	3.40E-04		}						
79Se	8.92E-01	2.95E-06						-		
90Y	7.15E+04	2.36E-01	10			2.60E-04				
90Sr	7.15E+04	2.36E-01	10			8.80E-02	÷			
93mNb	5.26E+00	1.74E-05			2.52E-07	1.60E-03	4.04E-10			
93Zr	5.78E+00	1.91E-05			2.77E-07	9.90E-04				
99Tc	9.32E+02	3.08E-03			4.47E-05			0.06%		
106Ru	9.37E-05	3.09E-10				1.20E-02				
113mCd	1.11E+02	3.67E-04			5.33E-06			0.04%		
125Sb	5.23E+01	1.73E-04			2.51E-06					
126Sn	3.69E+00	1.22E-05			1.77E-07	3.70E-02				
1291	7.67E-01	2.53E-06			3.68E-08					
134Cs	1.31E+00	4.33E-06			6.29E-08					
137Cs	8.91E+05	2.94E+00			4.28E-02	2.10E-02		62.39%		
137mBa	8.43E+05	2.78E+00		,	4.05E-02	8.60E-14				
151Sm	2.05E+04	6.77E-02			9.84E-04	5.80E-04		0.04%		
152Eu	5.21E+00	1.72E-05		 		1.90E-01				
154Eu	5.56E+02	1.84E-03								
155Eu	6.37E+02	2.10E-03								
226Ra	2.73E-04	9.02E-10		•		3.60E-01				
228Ra	1.05E-01	3.47E-07								
227Ac	2.84E-03	9.38E-09								
229Th	4.71E-03	1.56E-08								
232Th	2.15E-02	7.10E-08		•		· · ·				
231Pa	7.52E-03	2.48E-08 3.30E-07								
232U	1.00E-01	3.30E-07 1.36E-06								
233U 234U	4.11E-01	1.30E-00 3.83E-07								
235U	1.16E-01 4.69E-03	3.83E-07 1.55E-08								
236U	4.69E-03 3.64E-03	1.33E-08 1.20E-08								
238U	3.64E-03 1.05E-01	3.47E-07								
237Np	7.21E-01	2.38E-06								
238Pu	1.15E+00	3.80E-06 1.37E-04								
239Pu 240Pu	4.14E+01 7.05E+00	2.33E-05								

APPEND	DIX D - EM			OSE CALC' E) WEST A		IS FOR 3'	' PIPE CU	TS,
3 inch, Schedule 40 pipe	3.07	Inch inside Diameter			• • • • • • • • • • • • • • • • • • • •			
Area of 3" pipe interior	7.39	inches ²	-					
Total pipe volume (TPV), 12" length	1.45	liters					.*	
Release Fraction (RF)	1.00E-03							
Total Waste in Tank (TW)	3.03E+05	liters						
Analyte	Tank Inventory	Average Conc. (Ci/L)	of Pipe	annual possession quantity (ci)	Emit (ci/yr)	Unit Dose Factor, mrem/Ci (offsite)*	TEDE to the MEI (mrem/yr)	Percentage of Potential-to- emit Dose
241Pu	5.92E+01	1.95E-04	10	2.84E-03	2.84E-06	1.00E-01	2.84E-07	0.02%
242Pu	4.56E-04	1.51E-09	10	2.19E-08	2.19E-11	6.10E+00	1.33E-10	0.00%
241 Am	4.58E+02	1.51E-03	10	2.20E-02	2.20E-05	9.80E+00	2.15E-04	14.97%
243Am	1.63E-02	5.38E-08	10	7.82E-07	7.82E-10	9.80E+00	7.67E-09	0.00%
242Cm	9.70E-02	3.20E-07	10	4.66E-06	4.66E-09	3.20E-01	1.49E-09	0.00%
243Cm	9.70E-02	3.20E-07	10	4.66E-06	4.66E-09	6.60E+00	3.07E-08	
244Cm	8.51E-01	2.81E-06	10	4.08E-05	4.08E-08	5.20E+00	2.12E-07	0.01%
				9.12E+01	9.12E-02		1.44E-03	100.00%

APPENDIX E EMISSION AND DOSE CALCULATIONS FOR PIT WORK

_	_
	•
	. 1
	-

APPENDIX E - CALCULAT	EMISSION A						
Release Fraction (RF)	1.00E-03		. •				•
Total Surface Area (TSA) of individual Pit*	4.46E+05	cm ²	4.80E+02	ft²			
Multiplier (estimated entries) (M)	60						
Smear Sample Calculations	Max Smear Removable Concentration (dpm/100 cm ²)*	Conversion (dpm/100cm ²) to (Ci/cm ²)	Max Smear Concentration (Ci/cm ²)	Annual Possession Quantity (Ci)	Unabated Release (Ci/yr)	Offsite Dose Factor (mrem/Ci)	Unabated And Abated Dose (mrem/yr)
	Α	В	C = A*B	D =(TSA)*C*(M)	E=RF*D	G	G
Alpha (Am-241)	20	4.50045E-15	9.00E-14	2.41E-06	2.41E-09	1.20E-05	2.89E-14
Beta (Sr-90)	600,000	4.50045E-15	2.70E-09	7.22E-02	7.22E-05	1.10E-01	7.95E-06
Total				7.23E-02	7.23E-05		7.95E-06**

Notes:

^{*}For conservatism, the highest levels of smearable contamination noted on historical Radiological Survey Report, (DSTP-00268) for the 241-AN-A-Valve Pit, was used. This pit is an averaged sized pit.

^{**}Emissions from pit coring activities are included since the total surface area of the pit was used for these calculated emissions. Using the rationale that the radionuclides deposited on the inside of the pit walls can only be released once, the total unabated dose rate is considered bounding.

APPENDIX F

POTENTIAL UNABATED EMISSIONS AND DOSE FOR SOIL EXCAVATION ACTIVITIES

POTENTIAL UNABATED EMISSIONS AND DOSE FOR SOIL EXCAVATION ACTIVITIES POTENTIAL UNABATED EMISSIONS AND DOSE FOR SOIL EXCAVATION ACTIVITIES

EXCAVATION ACTIVITIES								
MAXIMUM CONTAMINATED SOIL EXCAVATED	50,000	FEET ³						
SOIL DENSITY	98	POUNDS/FEET ³						
TOTAL MASS OF SOIL (TMS)	2.22E+09	GRAMS						
MAXIMUM ALPHA READING (MA)	5	СРМ						
MAXIMUM BETA/GAMMA READING (MB)	10,000	СРМ						
RELEASE FRACTION (RF)	1.00E-03	,						

Based on initial unit dose factors.

ASSUMED ISOTOPE	CONVERSION FACTOR (pCi/gram)/cpm1	ANNUAL POSSESSION QUANTITY ² Ci	Potential- to-emit, Ci/yr	Unit Dose Factor, mrem/Ci ³	Potential- to-Emit Dose, mrem/yr ⁵	% UNABATED OFFSITE DOSE
	A	B=A*TSM*MA(MB)/1E12	C=B*RF	D	E =C*D	F =E/(sum of E)
Sr-90	3.54E-01	7.87E-00	7.87E-00	1.10E-01	4.33E-04	29.69%
Am-241	1.42E+01	1.58E-01	1.58E-01	1.30E+01	1.03E-03	70.31%
TOTAL		8.032E+00	8.03E-03		2.92E-03	100.00%

Based on updated unit dose factors.

Notes:

¹Weight of Soil X Field Instrument Reading X Conversion Factor.

²HNF-2418, Soil Contamination Standards for Protection of Personnel, March 1998, P. D. Rittmann

³Taken from Westinghouse Hanford Company Facility Effluent Monitoring Plan. No onsite public receptor at that time.

⁴HNF-3602, Rev 1, Calculating Potential-to-Emit Releases and Doses for FEMPs and NOCs.

⁵The abated dose is the same as the Potential-to-Emit dose, as no abatement controls are used.

THIS PAGE INTENTIONALLY LEFT BLANK

HANFORD SITE AIR OPERATING PERMIT

Notification of Off-Permit Change Permit Number: 00-05-006

This notification is provided to State of Washington, Department of Ecology, Washington State Department of Health, and the U.S. Environmental Protection Agency as notice of an off-permit change described as follows.

This change is allowed pursuant to WAC 173-401-724(1) as:

- 1. Change is not specifically addressed or prohibited by the permit terms and conditions
- 2. Change does not weaken the enforceability of the existing permit conditions
- 3. Change is not a Title I modification or a change subject to the acid rain requirements under Title IV of the FCAA
- 4. Change meets all applicable requirements and does not violate an existing permit term or condition
- 5. Change has complied with applicable preconstruction review requirements established pursuant to RCW 70.94.152.

Provide the following information pursuant to WAC-173-401-724(3):

Description of the change:

Submittal of Radioactive Air Emission Notice of Construction Application For The E-525 Double-Shell Tank Transfer System Modifications Project. This application allows the E-525 Project to bring portions of the double-shell tank system into regulatory, safety, and contractual compliance.

Date of Change: (To be provided in the agency approval order.)

The date the approval order is issued by Washington State Department of Health.

Describe the emissions resulting from the change:

Radioactive air emissions unabated and abated doses are 6.5E-03 mrem per year total effective dose equivalent to the maximally exposed individual.

Describe the new applicable requirements that will apply as a result of the change: (To be provided in the agency approval order.)

Conditions and limitations will be those identified in the approved order when issued by Washington State Department of Health.

For Hanford Use Only:

AOP Change Control Number:

Date Submitted: